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Abstract: New techniques are presented that permit the use of chemical graph theory to obtain secular equations 
for small molecules. The new techniques significantly accelerate manual calculations. A previously unrecognized 
relationship between the characteristic polynomial for a Hückel annulene and the secular equation for the 
corresponding Mobius annulene is deduced. The power of the graph-theoretical approach to illuminate 
chemically useful generalizations at the Hückel level is exemplified. 

Introduction 

Hückel Theory. In 1931, Hückel described a very simple 
molecular orbital approach to the π-electronic structure of 
planar molecules [1]. Since then, many textbooks (e.g., [2–4]) 
have been written to introduce Hückel theory to undergraduate 
students and apply it, primarily, to planar hydrocarbons. The 
manual application of Hückel theory to a hydrocarbon with n 
carbon atoms requires one to: (a) write a set of n homogeneous 
linear equations, (b) generate an n × n secular determinant, (c) 
diagonalize the determinant to generate an nth order 
polynomial (the secular equation), (d) obtain n roots for the 
secular equation (the set of n roots is called the spectrum of the 
polynomial) [5], (e) calculate the n molecular orbital energies 
(the eigenvalues) using the numbers in the spectrum, and (f) 
obtain n molecular orbitals (the eigenfunctions) for the 
molecule by substituting the spectrum roots back into the 
homogeneous linear equations. This article will focus on 
techniques that provide polynomial spectra (end of step d). At 
that point, one is in a position to obtain a variety of resonance 
energies commonly invoked in Hückel-level discussions (e.g., 
lectures about aromaticity [6]). 

The manual application of Hückel theory to small molecules 
[7], can be enormously time consuming. For example, Hückel 
calculations on the C8 tricycle 1 (Figure 1) require one to draw 
125 determinants, diagonalize 46 two by two determinants, 
and add together 21 polynomials in order to obtain the secular 
equation, S(x). 

Such lengthy, tedious, and repetitive procedures lead to 
frequent errors and a great deal of frustration for 
undergraduate students. On the other hand, carrying out such 
calculations by computer leaves students with "black-box 
syndrome," that is, they gain little understanding of or 
familiarity with the mathematics that provides chemical 
insight. 

Chemical Graph Theory. Chemical graph theory [5, 7] 
constitutes a completely different mathematical approach that 
also generates the Hückel eigenvalues and, from them, the 
various resonance energies referred to earlier. Using this 
approach, one draws Sachs graphs, which are used to obtain 
each polynomial coefficient independently. Sachs graphs may 
be composed of two types of components: edges (or σ bonds) 
and rings. To draw a Sachs’ graph, draw the Lewis structure 
and delete all bonds so that only the dots remain where the 

carbon atoms are located. Next, some of the dots are connected 
to make edges (sigma bonds) or rings. The sole rule in drawing 
Sachs graphs is that individual components may not touch (i.e., 
must be nonincident). The appropriate number of carbons (or 
vertices) in each graph is determined by the coefficient sought. 
Once the graphs are drawn they are simply counted and the 
resultant total transformed into the target coefficient by means 
of the Sachs formula. 

A generalized form for the polynomial (called the 
characteristic polynomial: PC(x)) is given in equation 1. 

 PC(x) = a0x
n + a1x

n–1 + a2x
n–2 + ... + akx

n–k + ... + an = 0 (1) 

By definition, a0 = 1 and a1 = 0. All other coefficients may be 
obtained by drawing Sachs graphs with the appropriate number 
of vertices included in their components, for example, Sachs 
graphs for a2 (designated s2) have only two vertices involved in 
graph components, while s3 graphs have 3 vertices involved in 
components and so on. Figure 2 presents the Sachs graphs for 
methylene cyclopropene (2). 

Because there are four carbons in 2, the characteristic 
polynomial is fourth order. a0 = 1 and a1 = 0. The other 
coefficients are determined with the Sachs formula (see 
equation 2). 
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where c(s) is the number of components in each graph, r(s) is 
the number of rings in each graph and k is the number of 
vertices included in the graph components. Thus, for 
methylene cyclopropene (2) there are 4 s2 graphs, for which 
c(s) = 1 and r(s) = 0. Applying the Sachs formula leads to a2 = 
–4. The same procedure on the s3 graph leads to a3 = –2. Now, 
a4 = +1. Compound 2 has the characteristic polynomial and 
spectrum shown in Figure 3. 

When graphs have the same number of vertices but a 
different number of components, they must be collected and 
processed separately. Hence, the s4 graphs for cyclobutadiene 
are drawn and processed as shown in Figure 4. 

The application of graph theory to small molecules [7] can 
be enormously time consuming. For example, to obtain the 
characteristic polynomial for the C8 tricycle 1 traditionally 
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Figure 1. Secular equation and spectrum for the tricycle (1). 

 
Figure 2. Sach’s graphs for methylene cyclopropene (2). 

 
Figure 3. Characteristic polynomial and spectrum for methylene 
cyclopropene (2). 

 
Figure 4. Calculating a4 for cyclobutadiene using two types of s4 
graphs. 

required one to draw 89 Sachs graphs. Determining a4 for 1 
has required drawing 29 two-edge Sachs graphs. It is very easy 
to inadvertently draw the same graph twice and very difficult 
to recognize which is the duplicate pair on a page filled with 
30 graphs. To determine a6 for the commonplace molecule, 
naphthalene, one must draw 63 graphs. 

Furthermore, contrary to an earlier statement [7], the secular 
equation and the characteristic polynomial are often not 
identical. Imagine having a set of roots r1, r2, r3 ..., which are 
used to construct a polynomial. Now, multiply each root by –1 
and then construct a second polynomial. These polynomials 
would be related in exactly the same way that the secular 
equation and the characteristic polynomial are related. Thus, 1 
has the secular equation given in Figure 1, but has the 
characteristic polynomial given in Figure 5. 

For nonalternant hydrocarbons like 1, the characteristic 
polynomial and the secular equation are not the same. The 
roots of the characteristic polynomial must be multiplied by –1 
before they can be substituted into the homogeneous linear 
equations to obtain the molecular orbitals for the molecule of 
interest. Moreover, the eigenvalues (orbital energies) require 
different definitions for Hückel theory (EH) and graph theory 
(EG) as shown in equations 3 and 4. 

 EH = α – riβ (3) 

 EG = α + riβ (4) 

where ri is a root for the appropriate polynomial. 
So, a student of Hückel theory, who wishes to exploit graph 

theory, must assume the burden of handling two closely related 
but different polynomials and two different but closely related 
definitions for energy. No matter which approach is adopted, 
the methods are exceedingly cumbersome and prone to 
copying errors. In my experience, students will invariably 
choose to do matrix diagonalization rather than draw Sachs 
graphs whenever they are given the option. 

Results and Discussion 

Improved Techniques. Clearly, it would be helpful if graph 
theory could provide secular equations directly. For a given 
structure, the secular equation and the characteristic 
polynomial have the same absolute value for corresponding 
coefficients but the signs are reversed for all a2n+1 coefficients. 
Consequently, it is a simple matter to modify the Sachs 
formula so that it provides the secular equation coefficients 
directly (see equation 5). 

 ( ) ( )( ) ( )
1 2

k

k c s r s

k
s

a
+= −∑  (5) 

where c(s) is the number of components in each graph, r(s) is 
the number of rings in each graph, and k is the number of 
vertices included in the graph components. This is the 
modified Sachs formula. 

The tedium and risk in using the graph theoretical approach 
for obtaining secular equations lies in drawing Sachs graphs. 
Drawing them is unnecessary, because one only needs to count 
them. To use my technique, one has to (a) draw the structure of 
interest, (b) number the vertices, (c) produce a list of edges (σ 
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Figure 5. Characteristic polynomial and spectrum for (1). 

 
Figure 6. Complete listing of edges and rings for (1). 

 
Figure 7. Rapid calculation of a7 for the secular equation of (1). 

bonds) and rings, (d) count graphs without drawing them and 
(e) apply the modified Sachs formula (equation 5) to obtain the 
secular equation. This approach is set up for 1 in Figure 6. 
Note that a list of rings includes all possible continuous 

circuits, not simply the three rings most chemists would 
recognize. 

The graph-theoretical requirement that graph components be 
nonincident means that components collected into the same 
graph (Figure 6) may not have a common vertex, for example, 
(1, 2)(1, 3) would be an illegal s4 graph for 1. 

The listing shown in Figure 6 can now be used in a manner 
analogous to an abacus. For example, to determine how many 
s4 graphs contain the (1, 2) edge, put your pencil on (1, 2) 
(Figure 6) and count all of the edges that do not contain a 1 or 
a 2, you should find 6 such s4 graphs. I require my students to 
write this out as shown in equation 6. 

 (1, 2) + e = 6 (6) 

If edges are listed, as shown in Figure 6, once all of the (1, 
2) edge-containing graphs are counted, then one can proceed 
through the list finding all the s4 graphs containing the (1, 3) 
edge and so on. All possible combinations of edges and rings 
with the appropriate number of vertices must be counted, so 
(5, 6, 7, 8) is also a valid s4 graph. There are 29 two-edge s4 
graphs and one cyclic s4 graph for 1. Equation 7 shows how to 
calculate a4 for the secular equation of 1 using the modified 
Sachs formula (see equation 5). 

 a4 = 29(–1)4+2 (2)0 + 1(–1)4+1 (2)1 = +27 (7) 

It takes practice to avoid overlooking some cyclic graphs. 
Figure 7 shows how to obtain a7 for 1. 

Now there is a manual graph-theoretical technique that will 
provide secular equations for small molecules in a far more 
rapid and much less error-prone manner. In my experience, 
undergraduates are willing to use this approach in preference 
to matrix diagonalization. 

Secular Equations for Mobius Annulenes. These days, 
Hückel-level discussions about aromaticity often include both 
planar monocycles with parallel p orbitals (Hückel annulenes) 
and nonplanar monocycles in which each p orbital has been 
rotated by θ° relative to its contiguous neighbors (Mobius 
annulenes) [8]. The secular equation for a Hückel annulene 
may be obtained by enumerating Sachs graphs and using the 
modified Sachs formula (equation 5) while the characteristic 
polynomial may be obtained by enumerating Sachs graphs and 
using the original Sachs formula (equation 2). 

For nonalternant annulenes, the secular equation for a given 
Hückel annulene has the same spectrum as that for the Mobius 
annulene, except that each root has been multiplied by –1. This 
relationship can be simply deduced from the Frost and 
Zimmerman circle mnemonics as they apply to nonalternant 
annulenes [9, 10]. Hence, the secular equation for a 
nonalternant Mobius annulene is the characteristic polynomial 
for the corresponding Hückel annulene. From the graph-
theoretical standpoint, the sole difference between Sachs 
graphs for a Hückel annulene and the Sachs graphs for the 
corresponding Mobius annulene is that a Mobius cyclic Sachs 
graph is edge-weighted, that is, the an term for a nonalternant 
Hückel annulene must be multiplied by –1 to get an for the 
corresponding Mobius annulene (see reference 5a, Vol. 1, p 
28). This generalization is subsumed by the general 
recognition that a nonalternant Mobius secular equation is the 
corresponding Hückel characteristic polynomial. 
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Figure 8. Compounds 3 and 4, nonalterant monocycles showing two 
nonbonding electrons in their Lewis structures. 

For a given alternant annulene, the Mobius secular equation 
is identical to the Hückel characteristic polynomial with the 
exception of the nth term: an. For alternant annulenes, one can 
always draw two acyclic sn graphs and one cyclic sn graph. For 
4N Hückel annulenes, the cyclic Sachs graphs, in conjunction 
with the Sachs formula, contribute +2 and the cyclic graph 
contributes –2 to an. Thus, all Hückel 4N annulenes have both 
secular equations and characteristic polynomials in which an = 
0. The corresponding Mobius 4N annulenes have the same 
Sachs graphs, but now the cyclic Sachs graph is edge-weighted 
so that it also contributes +2 to an. Thus, all Mobius 4N 
annulenes have secular equations in which an = +4. A similar 
argument will show that all 4N + 2 Mobius annulenes must 
have secular equations in which an = 0.  It is now a 
straightforward exercise to write a general relationship 
between the characteristic polynomial (HPC(x)) for a given 
Hückel annulene and the secular equation (MS(x)) of the 
corresponding Mobius annulene (see equation 8). 

 MS(x) = HP(x) + [2 + 2(–1)v] (8) 

where v equals the number of vertices in the annulene 
Given either the secular equation or the characteristic 

polynomial for a Hückel annulene, the relationship in equation 
8 obviates the need to diagonalize matrices or count Sachs 
graphs in order to obtain quantitative data for the 
corresponding Mobius annulene. Note Heilbronner's 
suggestion [11] that eigenvalues for Mobius annulenes should 
have spectrum roots multiplied by cos θ (θ is the angle 
between adjacent p orbitals in a Mobius array). Thus, for 
Mobius cyclobutadiene, the secular equation is x4 – 4x2 + 4, 
the spectrum is –1.414, –1.414, 1.414, 1.414, θ = 45°, cos θ = 
0.707, and the eigenvalues are α + β, α + β, α – β, α – β. 

Why Bother With Manual Calculations? In spite of 
criticisms about Hückel-level eigenvalues and Hückel-level 
partial charges for nonalternant molecules like 2, Hückel 
theory has produced some powerful chemical insights. 
Undoubtedly, the best known is the Hückel view of aromatic 
and antiaromatic structures like benzene and cyclobutadiene. 
The one major advantage Hückel theory has over higher levels 
of theory is that Hückel theory alone permits exact 
generalizations. For example, from the Pairing theorem (see 
reference 5b, p. 16), no carbon atoms will have net π-electron-
derived charge in any alternant hydrocarbon. Initially, the best 
argument in favor of learning/teaching the graph-theoretical 

approach to obtaining the characteristic polynomial was that, 
in some cases, drawing/counting Sachs graphs was faster than 
manual matrix diagonalization. Even with the improved 
methodology described in this report, there are very few 
molecules for which one can obtain a secular equation or a 
characteristic polynomial faster by hand than one can with a 
computer (examples: ethylene and allyl). 

Chemical graph theory offers computational power and 
insight that neither manual matrix diagonalization nor 
computer calculations can. Section 2 of the Results and 
Discussion sectopm provides a nice example. No matter how 
many specific structures are subjected to computer 
calculations, one can never be quite sure, on that basis, 
whether equation 8 would hold for the next Mobius annulene. 
Furthermore, it is not an obvious relationship for someone 
parked in front of a computer, but it is not hard to see for 
someone who knows some graph theory. 

I conclude with a final example. Nonalternant monocycles, 
which must show two nonbonding electrons in their Lewis 
structures, are particularly interesting from the standpoint of 
polarity (Figure 8). Compounds 3 and 4 are a pair of 
representative structures. 

Simple graph-theoretical arguments permitted the deduction 
that 3 (just one odd substituent on the ring) would be very 
polar, while 4 (more than one odd substituent on the ring) 
would be nonpolar at the Hückel level [12]. Higher-level 
calculations, both semiempirical and ab initio, fully support the 
very high polarity predicted by Hückel theory for the lowest-
lying singlet state of 3 [12, 13]. It is difficult to see how 
someone with a Hückel program would recognize that 
computer calculations on 3 and 4 would be of interest, much 
less how they would prove that additional odd substituents 
must depolarize the structure. 
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